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Warm up: Electric Current

J=-D°Vp+o2E; J(w,q) = —D%q p(w, ) + o2& (w, )
D" is a diffusion constant; o is a DC conductivity.

Continuity equation (charge conservation): VI+p=0

Linear response theory:

. 0
> . _AC T AC _ W o,
J(w,q) = o, (w) E(w, q) ; Oe — iw — DOq2

AC conductivity. Valid in hydrodynamic regime of small w, q.

Any generalisations to finite w and ¢?



The most general (linear) constitutive relation for e/m current including both longitudinal
and transverse responses

J(w,d) = -D (w,d’) id p(w, @) + 00 (0, 0”) E(w, @) + om (w,a*) id x B (w,q).

—

J= D" VIV p + o0 (at, vz) £+ om (at, vz) vV x B.

This is an " off-shell” constitutive relation.
D, o., and o, are momenta-dependent transport coefficient functions (TCF).

can be uniquely determined in holographic models to be discussed next
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Maxwell field in Schwarzschild- AdS5 geometry (probe approximation)

1
S = — d’°x /—g " e (F)mn(FHOMY + Scq.

Maxwell equations
EQ" := VMF™N =0

Schwarzschild- Ad S5 geometry (ingoing Eddington-Finkelstein coordinates)

2
ds® = S N

dxVdx" = 2dtdr — r’f(r)dt” + r’6;dx'dx’,
f(r) =1 — 1/r*. The horizon is at r = 1, the Hawking temperature is 7T = 1.

Near the conformal boundary » = co the solution is expandable in a series (A, = 0)

A X, A2 X, B X, 1 —2
'u( )_|_ u( )_|_ u( )]ogr_2_|_(’) ogr ,

r r2 r2 r3

A,(r,xq,) = ALO)(XQ) +

The boundary current (using the holographic dictionary)

3= —n" (241 4 2B 4 n"'0,F})) .



4 dynamical eqns EQ" = 0 — transport, EQ" = 0 — current conservations.

EQ" = 0 admit the most general static homogeneous solutions

J2
A, = ALO) + E%t, ALO) — const, p = const

The boundary theory is a static uniformly charged plasma with no external fields

J' = p, J =0

Next, following the spirit of
S. Bhattacharyya, V. E. Hubeny, S. Minwalla, and M. Rangamani, (2008)

AELO) — AELO)(Xa), p — p(Xa).

The solution has to be amended:

Au(rx0) = AP () + 205, 4a e x)

Solve for a (bulk-to-boundary propagator)

Different from approaches based on two-point correlators, which assume on-shellness



U(1) vector current: Diffusion and Conductivity

J(w,d) = -D (w,d") id p(w, @) + 00 (v, 0”) B(w, @) + om (w,a”) id x B (w, @) .

_1—|-1'—|—1[22—|—2(6123)]—|—

=3 87T1w 18 T w q og T :
log 2 1

e = 1+ Oi iw—|—£[7r2w2—q2(37r—|—610g2)] + -

1
am:O—I—Eiw (271'—71'2—|—4log2) N EEE
agl > 0 in a pure QED plasma with one Dirac fermion at one loop level
B. B. Brandt, A. Francis, and H. B. Meyer, (2014)
0

o, = 0 based on Boltzmann equations J. Hong and D. Teaney, (2010)

Maxwell is linear (exact), no Lorentz force






Memory Function / Causality







Uy (1) X Ua(1): Anomaly-induced transport

5d Lagrangian:
1 1 a a
L= —ZGZ(FV)MN(FV)MN - Ze/Z(F Jmn (F)M
. {MNPQR

n = [3eze’AM(FV)NP(FV)QR + e/SAM(Fa)NP(Fa)QR] :

Boundary currents:

—, —,

9,J" = 0, 8,35 = ar (38 - B+ & B")
external e/m (€, B) and axial (£%, B) fields.

CS introduces non-linearity in EQ



I) Linear transport

p(Xa) = P+ €0p(Xa), p5(Xa) = Py + €6p5(Xa),
p(xa) = B+ €dp(Xa), g (Xa) = By + €15 (Xa), n=p/2, By = Py /2
Ei(xq) = €&i(xa), Bi(x.) — €Bi(x4), EM(xa) — €€ (Xa), Bi(xa) — €B:(x4).

J' = p, J=—-DVp+ 0+ ouV xXB+o,B+ 0,V x B+ 0.5

J; = Py, Ji5 = —D€p5—|—ae§a—|—am€ X ga—kaxga—kaaﬁ X g—|— a,fg. 8MJ/; =0

o, — CME; D. E. Kharzeev and H. J. Warringa, (2009)

o, — CSE; D. T. Son and A. R. Zhitnitsky, (2004) ; M. A. Metlitski and A. R. Zhitnitsky, (2005)



_ 2 (-2, -2 . 1 2 _2 , _2
Om = 72K (,u —|—,u5) (2log2 — 1) + iw {1—6(27r—7r —|—410g2)—|—(’)(u —|—,u5)} 4

om[q@ = 0] — om[q =0, i = fi5 = 0] is linear in x* (&> + [3)

1 2
oy = 12k, {1 + iw log 2 — sz log2 2 — ;1—4 [71'2 — 1728k (ﬁi -+ Sﬁz) (log 2 — 1)2] }_|_. ‘e

O'?( A. Gynther, K. Landsteiner, F. Pena-Benitez, and A. Rebhan, (2011)

oy|q = 0] is linear in k 5 and independent of p

oxli, psl = oxlps, pl 0o = 144r°0f; (2In2 = 1) + - -,

Plus tons of plots for arbitrary w, q and u, us



=0.25, kg =0

Im(oy), K5

=0.25, kp =0

Re(oy), K5

H.-U. Yee, (2009)

Im(oy), ks = 0.125, Kz = 0.125

Re(oy), ks = 0.125, ki = 0.125




I1) Non-linear corrections induced by the magnetic field

B = B(X) # B(t)

1
Dy = 5 — 18(2log2 —1) K’ B

The correction is negative! Violates low bounds P. Kovtun and A. Ritz, (2008)

- [1 i
w = [ZFl + 36 (1 — 2log2) /4325’2] 6rq-B— [5 + 18 (1 — 2log2) k’B? iqz—gq4 log2+- - -.

The first term represents the chiral magnetic wave (CMW) D. E. Kharzeev and H.-U. Yee, (2011)

We see nonlinear in B corrections to both the speed of CMW and its decay rate.
Also the degeneracy in the speed of the positive and negative modes is removed.



I11) Non-linear transport induced by constant external e/m fields

The external fields are assumed to have constant background values E_i, ]§, ]:ja, B
E(xa) = E + edE(xy), B(x,) = B + €6B(x,),

E%(xq) = E* 4+ €0E*(x4), B%(x,) = B* 4+ edE*(x4).

e Constant background B # 0, E = B* = E* =0

J?g) = P, j(o) — 12"‘3,“5(]3) B JE(O) = ps, j}5(0) = 12kp(B) B
Index ;) means zeroth order in gradient expansion (e = 0)

CME is exact to all orders in B. D. E. Kharzeev and H.-U. Yee (2011); A. V. Sadofyev and M. V.
Isachenkov (2011), U. Gursoy and A. Jansen (2014); U. Gursoy and J. Tarrio (2015)
but there are gradient and E-field corrections



e Constant background e/m fields B & E, weak field expansion, B¢ = £% =0
Jo=E+ 12k, (B, E)]§ + 72 log 2 mzu(B)E x B — 367T2f<;3,u5(B, E) (]§ X E) XE+---,
Ts0) = 1261(B)B + 7210g 2 k2, (B, E)B x B — 3672 1(B) (E o E) B4,

Field-dependent chemical potentials
1_ 2 12
p(B) =_p+18(1—2log2) k"pB" + -,
(B, E) = 275 +18(1 —2log2)x"p.B —|—§(—7r—|—210g2) 12cB-E+ - ..

® u. is induced even in totally neutral plasmas p = p5 = 0, via (E - B).

e BB & (ﬁﬁ)ﬁ terms are the first nonlinear effects in CME
important for discussions of strong magnetic fields



—

Jo = E + 12k, (B, E)B + 72log 2 k*u(B)E x B — 367%k%4, (B, E) (

Udl
tljl
N——"
X
=
_l_

Ts0) = 126u(B)B + 72 log 2 k%0, (B, E)B x B — 367%x*u(B) (ﬁ " E’) B

° (]§ X E) term leads to anomaly induced Hall current
(chiral Hall effect S. Pu, S.-Y. Wu, and D.-L. Yang, (2015))

eJo~ (BxE)xE = —E?B (CME) + (E-B)E (CEE)
(XKT E. V. Gorbar, I. A. Shovkovy, S. Vilchinskii, I. Rudenok, A. Boyarsky, and O. Ruchayskiy, (2016))

CEE Chiral Electric Effect Y. Neiman and Y. Oz, (2011)

e J50) ~ (B xE)xE = —E’B (CSE) + (E - B)E (CESE)

CESE Chiral Electric Separation Effect  X.-G. Huang and J. Liao, (2013), even when us = 0



Towards all order non-linear constitutive relations

Linear in constant background times linear in inhomogeneous field perturbations

The first terms 5p5]§, 5pB are responsible for the chiral magnetic wave (CMW)



IV) Constant magnetic and time-dependent electric fields

—,

B = B, E=E@t) # ER), B* = £ =o, p = ps = 0
9, J" =0, 8, =12k€E-B — ps # 0
e Gradient expansion

- » 5 log2
J = 12/<:,LL5B + £ —

— 7T2 — 3 —
OE — iafg — (571' + 3log 2) KOy B

tor?i’p, (B x £) x £+ 1244502p,B + 0 (8")

— — — — 3 — —
Js = 12kuB — 36 log 2 m2p5B X &+ > (7r2 + 3mlog 2 + filog2 2) /ﬁzzﬁtp5B X &

3 2 2 5 > 4
~3 48C + m° — 127w log 2 /<cp5B><8t5—|—C’3 o),

where C is a Catalan constant and #; is known numerically only #; =~ 0.362.

1 3 L
=040 (83), s = 5p5 + 5 (1 — 2log2) k€ - B+18 (1 - 2log 2) x”p, B’ + O (83>.



e Weak electric field expansion

p. ~ O(e), E(t) ~ O(e), B ~ O(e)

Linear in €

J'=0, J=0J[E + wm[d]pB + K 720 (5. ﬁ) B; 3 =p,,

The electric current is put on-shell,

i B;B; 12 202
J :O'ijgj, Oijj — O¢ 5ij_ B2 —|— O — 57'1—7'2 k- B
O'T \ -~ J
L

In DC limit Tf is known analytically K. Landsteiner, Y. Liu, and Y.-W. Sun, (2015);
M. Ammon, S. Grieninger, A. Jimenez-Alba, R. P. Macedo, and L. Melgar, (2016)
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To enhance the effect of anomaly,

sal =gl _ g7
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Conclusions

An off-shell constitutive relation for U(1) current consists of a momenta-dependent
diffusion term and two conductivities. Certain universality between dissipative transport
coefficients 7 and D is observed.

Causality restoration: at large momenta, the effective diffusion TCF is a decreasing
function of both frequency; the corresponding memory function has support in the past
only.

We have re-examined transport coefficients induced by the chiral anomaly. We seem to be
able to rediscover all known anomaly-induced effects within one and the same holographic
model, without introducing any additional inputs or model assumptions, which appeared
in the literature

For linearized problem, we have completely determined all anomaly-induced TCFs to all
orders in the gradient expansion

For nonlinear problem with constant external fields, we have found FE-induced corrections
to CME/CSE, and B-induced modifications to CMW, and diffusion coefficient D

There seem to be enhancements of anomaly-induced affects at finite frequencies



